A blog inspired by the analysis of how one would collapse Jupiter into a black hole, but primarily consisting of other of my own esoteric musings.
Tuesday, December 8, 2009
Ludum Dare
The Ludum Dare competition is a 48 hour competition wherein first a theme is voted on and selected and then 48 hours are given to the entrants during which they must code a game from scratch. Team entries are not allowed so you have to do it yourself and although preexisting code bases are allowed (so long as they are freely available to everyone before the competition). However all game logic and all content (both graphical and musical) is supposed to be generated during the competition. I haven't the foggiest idea how much of a game I can really expect to code up in 48 hours especially since I have never coded any means of taking user input that wasn't from the terminal (well... at least I haven't coded it well). On top of that I don't want to screw up my sleep schedule for the competition too badly so I will not be staying up the full 48 hours to code though that would be pretty epic (albeit likely counterproductive).
Regardless of whether or not something playable comes out of the experiment though I am going to make a time lapse screen recording of the two days. Which I'm pretty sure would be entertaining for me to watch even without being able to see the development of my coding.
Wish me luck!
Thursday, December 3, 2009
8 bit theater is AWESOME!!!
here is the very beginning
http://www.nuklearpower.com/2001/03/02/episode-001-were-going-where/
8 bit theater succeeds in being continuously hilarious and also having a vague continuity of story both of which are rare qualities. I would say more in the praise of 8 bit but basically you just have to read it for a bit and let the awesomeness suffuse you. If you do not get hooked in the 5 minutes it will take you to read the first 10 pages or so then see a doctor something may be medically wrong with you.
Cannot write more, must reread 8 bit.
Tuesday, November 24, 2009
The Rijke Tube or The Gondolo
As I was saying our young professor Gondolo (well... younger anyway) had a Rijke tube demonstration all set up but the tube was not like the one in the video it was a tube of more than a foot diameter and 10 feet or so tall. The tube was held by ropes hanging from the ceiling of the extremely large physics classroom. Professor Gondolo made the mistake of starting the propane burner and then teaching the physics of it. He taught the physics of the device for too long though and the wire mesh got rather hotter than it should have. When he was done explaining the physics and unblocked the bottom of the tube the mesh was so hot that the new airflow did a lot more than just allow resonance it allowed the cardboard tube to catch on fire. After that particular disaster when the demonstration was rebuilt it was built out of metal ducting and the name "THE GONDOLO" was painted on its side in red along with some nice decorative flames. Since professor Gondolo is going to hopefully become my research advisor I don't think I shall mention it until after he decides to accept me as his student, but I can't help but wonder how he feels about the giant metal demonstration tube that now bears his name.
Either fortunately or unfortunately I never saw the original demonstration with the cardboard tube. The cardboard tube was supposed to have been even larger and louder than the current metal one but the newer one is still damn impressive. The natural frequency of the tube is lower than you can hear (or at least hear well) so mostly what you hear when the tube goes off is the second and third harmonics. But the vibration is so loud and so low that you can definitely feel it.
Thursday, November 19, 2009
Picking A Research Advisor
About of the presentations weren't really of interest to me. To be clear that is to say that most of the presentations were about research that I would have no interest in doing. Of the seventeen I would give serious consideration to 10. Basically there were two types of research position that were represented solid state physics and astronomy. I find it somewhat of a surprise that I find myself drawn so much more to the astronomers than to the solid state but there we are. I still find myself drawn to being a theorist instead of experimentalist and although there were a number of solid state theorists looking for students there was only one cosmological theorist looking for students, namely Paolo Gondolo.
Paolo spends his time working on theories explaining dark matter dynamics. Through looking at gravitational interactions such as gravitational lensing we have been able to get a very good picture of the density of dark matter in the universe and also its distribution. However the only effects that we know are coming from dark matter are just gravitational effects. We might be detecting other effects of dark matter but simply don't know it. At the moment there are things we are observing which don't fit with the predictions of standard models. For instance we can predict the expected flux of cosmic ray positrons but the standard prediction doesn't fit with the observations. Paolo and a number of other people are trying to think up theories of dark matter interactions which could account for observations like this.
Paolo and company has created a fortran package called dark susy which is used to make calculations for the parameters of SUperSYmetric dark matter theories. Thus dark SU-SY. While I feel more attracted to working on the dark energy problem than the dark matter problem I thought working on dark susy might be just the right thing for me to do. My physics knowledge is nowhere near the level that it would need to be in order to really begin working on dark susy. For one thing I don't even have a good knowledge of the standard model of particle physics much less its supersymmetric counter parts. But of course I would run into the same problem in any field that I decided to start research in.
This morning I took the opportunity to go and talk to Paolo about becoming a grad student of his. He started off the discussion by trying to scare me off. Rather, he said he was trying to scare me off but really he was just trying to make sure I understood that there are major disadvantages to being a theorist. Being a theorist takes more work and longer hours and requires you to know more. As a theorist it is harder to get away from your work since anywhere there is paper and/or you have your laptop you can work. On top of that there is very little money in theory. Theory is cheap but that means theorists are underpaid. As a theory grad student the chances of getting an RAship are almost null so not only are the research hours generally longer as a theorist but you have to keep a TAship and teach in order to support yourself. But I knew all of that already so it wasn't really much of an eye opener.
Friday, November 13, 2009
Black Hole Basics Part 2
A black hole is an object with a density sufficient to cause a gravitational acceleration greater than the speed of light.
The point to which all mass is drawn at the center of the black hole is called the singularity.
The surface beyond which light cannot escape the black hole is called the event horizon.
The event horizon is a sphere whose radius is called the Schwarzschild radius which is determined for non rotating black holes by the equation R = 2GM/c2 here G is the gravitational constant 6.77 x 10-11 m3/(Kg*s2) M is the mass of the black hole and c = 299792458 m/s is the speed of light.
For part two we will begin with a more thorough analysis of the Schwarzschild radius. If you ever need to remember the equation for the Swarzchild radius is just remember that you combine the speed of light the gravitational constant and the mass of the black hole in such a way as to give you units of meters and you have the equation modulo a factor of 2.
The derivation of the Swarzchild radius is actually somewhat complicated since it involves general relativity theory. But as often happens a simple calculation using just Newtonian gravity gives the right answer. A Newtonian gravitational well of a spherical object has a potential of -G*M/r where r is the distance from the center of the sphere. This means that it would require at least m*G*M/r joules of energy to completely remove an object of mass m from the sphere of mass M if that object was originally a distance r away. This and the formula 1/2m*V2 give us all we need to calculate the Schwarzchild radius or rather the newtonian estimate of it.
We find that at a radius r we require a certain minimum escape velocity in order to not be trapped by the gravitational potential. Specifically we have
m*G*M/RSchwarzchild = 1/2m*V2escape
therefore RScwarzchild = 2*G*M/V2escape
But the condition we are interested in is the condition that the escape velocity is the velocity of light whereupon we recover our previous formula for the Swarzchild radius. This calculation is just a classical approximation but conveniently gives us the correct answer.
Black holes really are perfectly black. That is to say the event horizon of a black hole is a perfect absorber of light. This of course is not surprising since there is nothing at the event horizon for the light to reflect off of. In physics a body with this property of being a perfect absorber of light is also expected to be something called a blackbody emitter. A blackbody emits light according to a certain characteristic spectra which was discovered by Max Planck. Originally it was assumed that a black hole would not have a temperature and therefore would not emit radiation (meaning light). But careful thought about what might happen at the event horizon gave rise to the idea that the black hole could allow virtual particles to become real. Meaning that black holes really do emit radiation and therefore have a non zero temperature. This line of reasoning was followed by Stephen Hawking who calculated the temperature that a black hole would have to have to correspond to this emission. This leads us to the equation for the temperature of a black hole
T = K/M
where K = 1.227 x 1023 kilograms kelvin. (note this is not the boltzmann constant it is just an accumulation of a bunch of terms I didn't feel like writing out)
K may seem to be an extremely large constant temperatures but when you consider the masses involved it actually predicts ridiculously small temperatures. A one solar mass black hole would have a temperature of about 0.00000006 kelvin. Any natural black hole would have a larger mass than this and therefore have an even smaller temperature. So one can safely ignore the temperature of large black holes. Such small temperatures are virtually undetectable. Even for much smaller black holes say one the size of Jupiter the temperature is about 64 microkelvin.
But for very very small black holes hawking radiation causes them to rapidly evaporate though explode might be a more apt term. A black hole of a mass on the order of a kilogram or less would have a temperature of around 1023 and would essentially evaporate instantly. I bring up such a tiny mass because people frequently worry about cern or some other powerful particle accelerator generating a black hole which eats the earth. While it would be great if it were possible for cern to generate black holes because of some as yet unknown phenomenon if it did those black holes would have energies of at most say 1010 J which is being rather generous. Such an energy corresponds to a mass around a thousandth of a gram. So there could be no danger from such a black hole as it would evaporate as soon as it formed.
Tuesday, November 3, 2009
Exercising at 5:30
The weight machines on the other hand are much less sharable and since I have a rather pathetic upper body strength also much more embarrassing. Tomorrow morning I will try and mix up my routine by trying to do exercises on the weight machines first and then going up to run. Hopefully this regime lasts for the rest of the semester and beyond, but I have committed myself to it only for the rest of the week and then I will reevaluate whether or not I want to do it.
Monday, November 2, 2009
Nano Begins Again
At the moment the rough plot works something like this Charles and Agatha are strangers living in a city together. Agatha is scientist and engineer with a passion for numbers and artificial intelligence and the workings of the human brain. Charles is a fantasy geek who constantly daydreams himself into fantasy scenarios. Agatha builds some fancy device which monitors her brain activity. There is an accident and Agatha and Charles find themselves trapped in a strange fantasy world generated from the both of their minds. Or something at least vaguely like that.
Thursday, October 29, 2009
Like a virus building a campfire
I have many friends who work on this problem their whole lives. One friend, every time I see him I would say 'how long till we have fusion?' and every time he would tell me 'about 5 years' he would say. My friend he is dead now but the last time I see him I ask him 'how long till we have fusion?' and he respond me 'about 5 years' Now it seems that the consensus in the field is that we are making great progress and it really seems we will have fusion in about 5 years. But I would say to my friends I would say 'why we need it?' Perhaps we could use fusion to boil ocean water and irrigate the Sahara, or some project like this, some great project Like making enough water for the Sahara. It turns out we could not do this since this would heat the atmosphere of the earth. But this I tell them I say 'why we need it?' Every reaction has a size. Take campfire, if you build campfire the size of candle it will blow out. The surface area of the flame is too large and it cools rapidly a puff of wind will blow it out. But if you build campfire big enough, build campfire campfire size then it keeps itself warm and the reaction can be sustained. So every reaction has a characteristic size and the size of fusion reaction is size of sun and we want to make it on scale of campfire. This is like if a virus were to try and build campfire, and the relative ratio is about right. We are to viruses like sun is to us. So we try to make fusion on our scale it is like virus or single cell organism trying to build campfire it is ridiculous and we absolutely don't need it just like the virus does not need it, we absolutely do not need it.
The sentiment at the heart of this is being that we do not need fusion I have sympathy for the perspective for but do not agree with it. Eventually we will need fusion power though for now and for the next few decades at least I think we should instead try to use fission power. But I thought the entire episode was very interesting partly because of the perspective from which it is given. Also I think the picture evoked by the analogy of a virus trying to build a campfire is really impressive and striking. Where Efros wanted to use it to show that we do not need fusion I think it is just as effective a way of demonstrating the reason that it is so very hard to make fusion work on our scale.
Wednesday, October 28, 2009
The Law of Grading
The Law of Grading Efficiency:
Every impartial observer observes a grader to have a grading efficiency less than or equal to that observed by the grader.
Proof: Consider a grader with a stack of papers of height l0 who grades those papers in an amount of time t0 in the graders reference frame. Due to length contraction effects any observer who moves relative to the grader (for instance a passing professor) will observe the stack to be contracted along their direction of motion observing a length l < l0 and due to time dilation effects they will observe that it takes the grader an amount of time t > t0. So an observer in any frame will observe that the grader has less than or equal to the amount of work the grader thinks they have to do and observes that it takes the grader more than or equal to the amount of time to do the work that the grader thinks it takes. Thus the frame of reference which yields the maximum grading efficiency is the graders own reference frame.
Of course there was nothing in the analysis specific to the grading of papers so we obtain an immediate generalization.
The General Work Law:
The person doing the work always perceives the quantity of work they have to do to be greater than any other observer measures it to be and observes the time they have to do it in to be less than any other observer measures it to be.
Tuesday, October 27, 2009
Not Quite Hamlet
Hamlet's famous speech
to be or not to be that is the question whether tis nobler in the mind to suffer the slings and arrows of outrageous fortune or to take arms against a sea of troubles and by opposing end them. to die to sleep no more and by a sleep to say we end the heartaches and the thousand natural shocks that flesh is heir to tis a consumation devoutly to be wished to die to sleep to sleep perchance to dream ay theres the rub for in that sleep of death what dreams may come when we have shuffled off this mortal coil must give us pause. theres the respect that makes calamity of so long life for who would bear the whips and scorns of time the oppressors wrong the proud mans contumely the pangs of despised love the laws delay the insolence of office and the spurns that patient merit of the unworthy takes. when he himself might his quietus make with a bare bodkin? who would fardels bear to grunt and sweat under a weary life but that the dread of something after death the undiscovered country from whose bourne no traveler returns puzzles the will and makes us rather to bear those ills we have than fly to those we know not of. thus concience doth make cowards of us all and enterprises of great pitch and moment are with this regard their currents turned awry and lose the name of action. soft you now the fair ophelia nymph in thy orisons be all my sins remembered.
not quite hamlet
To be or not to be those are the null and alternative hypotheses. whether tis nobler in the mind to suffer the slings and arrows of outrageous instructors, or to take up calculators against a sea of math teachers and by playing games ignore them. To try to sleep no more and by a sleep to say we end the brainaches and the thousand broken pencils that students are heir to tis a consumation devoutly to be wished. to try to sleep to sleep perchance to dream. ay theres the rub for in that sleep of math what grades may come when we have shuffled out this testing center, must give us pause. Theres the respect that makes calamity of so long study. for who would bear the whips and scorns of class clowns. The oppressors wrong, the proud nerds contumely, the financial pangs of recieved love, the principles delay, the insolence of hall monitors, and the spurns that patient merit of the unruly takes. when he himself might his quietus make with a bare bodkin? who would fardels bear to grunt and sweat under weary homework but that the dread of something after highschool the undiscovered country, from whose universities no traveler returns puzzles the will and makes us rather to bear those grades we have than fly to jobs we know not of. thus parents doth make cowards of us all, and enterprises of great pitch and moment are with this regard their applicants turned awry and lose the name of dropout.
There are a number of points of this that I am unhappy with and would like to change. Also I think an update for undergraduate/graduate education processes is appropriate and so I will be reposting a new version when I get around to writing it.